
Today's Specials

● Detailed look at Lagrange Multipliers

● Forward-Backward and Viterbi 
algorithms for HMMs

● Intro to EM as a concept [ Motivation, 
Insights]



Lagrange Multipliers

● Why is this used ?
● I am in NLP. Why do I care ?
● How do I use it ? 
● Umm, I didn't get it. Show me an 

example.
● Prove the math.
● Hmm... Interesting !!



Constrained Optimization

● Given a metal wire, f(x,y) :

Its temperature T(x,y) = 

Find the hottest and coldest points on 
the wire.

● Basically, determine the optima of T 
subject to the constraint 'f'

● How do you solve this ?

x2y2=1

x22y2−x



Ha ... That's Easy !!

● Let y =         and substitute in T

● Solve T for x

1−x2



How about this one?

● Same T

● But now,

● Still want to solve for y and substitute?

● Didn't think so !

f x ,y:x2y22−x2y2=0



All Hail Lagrange !

● Lagrange's Multipliers [LM]  is a tool to 
solve such problems [ & live through it ]

● Intuition: 
– For each constraint 'i', introduce a new scalar 

variable – Li (the Lagrange Multiplier)

– Form a linear combination with these 
multipliers as coefficients

– Problem is now unconstrained and can be 
solved easily



Use for NLP

● Think EM
– The “M” step in the EM algorithm stands 

for “Maximization”
– This maximization is also constrained
– Substitution does not work here either

● If you are not sure how important EM 
is, stick around, we'll tell you !



Vector Calculus 101

● A gradient of a function is a vector :
– Direction : direction of the steepest slope uphill

– Magnitude : a measure of steepness of this slope

● Mathematically, the gradient of f(x,y) is:

    grad(f(x,y)) = [ ∂ f
∂x
∂ f
∂y

]



How do I use LM ?
● Follow these steps:

– Optimize f, given constraint: g = 0

– Find gradients of 'f' & 'g',  grad(f) & grad(g)

– Under given conditions, grad(f) = L * grad(g) 
[proof coming]

– This will give 3 equations (one each for x, y and z)

– Fourth equation : g = 0

– You now have 4 eqns & 4 variables [x,y,z,L]

– Feed this system into a numerical solver

– This gives us (xp,yp,zp) where f is maximum. Find 
fmax

– Rejoice !



Examples are for wimps !

What is the largest square that can be 
inscribed in the ellipse                ?

 

x22y2=1

(0,0)

(-x,-y)

(-x,y) (x,y)

(x,-y)

Area of Square = 4xy



And all that math ... 

● Maximize f = 4xy subject to 
● grad(f) = [4y, 4x], grad(g) = [2x, 4y]
● Solve:

 2y – Lx = 0
 x – Ly = 0


● Solution : (xp, yp) =              &

● fmax  = 

x22y2=1

x22y2−1=0
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Why does it work?
● Think of an f, say, a paraboloid

● Its “level curves” will be enclosing circles

● Optima points lie along g and on one of these circles

● 'f' and 'g' MUST be tangent at these points: 

– If not, then they cross at some point where we 
can move along g and have a lower or higher 
value of f

– So this cannot be an point of optima, but it is!

– Therefore, the 2 curves are tangent.
● Therefore, their gradients(normals) are parallel

● Therefore, grad(f) = L * grad(g)



Expectation Maximization

● We are given data that we assume to be 
generated by a stochastic process

● We would like to fit a model to this process, 
i.e., get estimates of model parameters

● These estimates should be such that they 
maximize the likelihood of the observed data 
– MLE estimates

● EM does precisely that – and quite efficiently



Obligatory Contrived Example
● Let observed events be grades given out in a 

class

● Assume that there is a stochastic process 
generating these grades (yeah ... right !)

● P(A) = 1/2, P(B) = µ, P(C) = 2µ, P(D) = ½ – 3µ

● Observations:

– Number of A's = 'a'

– Number of B's = 'b'

– Number of C's = 'c'

– Number of D's = 'd'
● What is the ML estimate of 'µ' given a,b,c,d ?



Obligatory Contrived Example
● P(A) = ½, P(B) = µ, P(C) = 2µ, P(D) = ½ – 3µ

● P(Data | Model) = P(a,b,c,d | µ) = K (½)a(µ)b(2µ)c(½-3µ)d = 
Likelihood

● log P(a,b,c,d | µ) = log K + a log½ + b log µ + c log 2µ + d log
(½-3µ)
 = Log Likelihood [easier to work with this, since we have sums 
instead of products]

● To maximize this, set ∂LogP/∂µ = 0

●                               => µ =

● So, if the class got 10 A's, 6 B's, 9 C's and 10 D's, then µ = 1/10  

● This is the regular and boring way to do it

● Let's make things more interesting ... 

b

2c

2
− 3d

1/2−3
=0

bc
6bcd



Obligatory Contrived Example
● P(A) = ½, P(B) = µ, P(C) = 2µ, P(D) = ½ – 3µ

● A part of the information is now hidden:

– Number of high grades (A's +B's) = h
●  What is an ML estimate of µ now?

● Here is some delicious circular reasoning:

– If we knew the value of µ, we could compute the 
expected values of 'a' and 'b' 

– If we knew the values of 'a' and 'b', we could 
compute the ML estimate for µ 

● Voila ... EM !!

EXPECTATION

MAXIMIZATION



Obligatory Contrived Example
Dance the EM dance

– Start with a guess for µ

– Iterate between Expectation and Maximization to 
improve our estimates of µ and b:

● µ(t), b(t) = estimates of µ & b on the t'th iteration
● µ(0) = initial guess
● b(t) = µ(t) / (½ + µ(t)) = E[b | µ] : E-Step
● µ(t) = (b(t) + c) / 6(b(t) + c + d) : M-step

[Maximum LE of µ given b(t)]
● Continue iterating until convergence

– Good news : It will converge to a maximum.

– Bad news : It will converge to a maximum



Where's the intuition?

● Problem: Given some measurement data X, estimate the 
parameters Ω of the model to be fit to the problem

● Except there are some nuisance “hidden” variables Y 
which are not observed and which we want to integrate 
out

● In particular we want to maximize the posterior 
probability of Ω given data X, marginalizing over Y:

● The E-step can be interpreted as trying to construct a 
lower bound for this posterior distribution

● The M-step optimizes this bound, thereby improving the 
estimates for the unknowns

 '=argmax


∑
Y

P  , Y |X 



So people actually use it?

● Umm ... yeah !
● Some fields where EM is prevalent:

– Medical Imaging
– Speech Recognition
– Statistical Modelling
– NLP
– Astrophysics

● Basically anywhere you want to do 
parameter estimation



... and in NLP ?

● You bet.

● Almost everywhere you use an HMM, 
you need EM:
– Machine Translation 
– Part-of-speech tagging
– Speech Recognition
– Smoothing



Where did the math go?

We have to do SOMETHING in the next 
class !!!


