Today's Specials

- Detailed look at Lagrange Multipliers
- Forward-Backward and Viterbi algorithms for HMMs
- Intro to EM as a concept [Motivation, Insights]

Lagrange Multipliers

- Why is this used ?
- I am in NLP. Why do I care ?
- How do I use it ?
- Umm, I didn't get it. Show me an example.
- Prove the math.
- Hmm... Interesting !!

Constrained Optimization

• Given a metal wire, f(x,y) : $x^2+y^2=1$

Its temperature $T(x,y) = x^2+2y^2-x$

Find the hottest and coldest points on the wire.

- Basically, determine the optima of T subject to the constraint 'f'
- How do you solve this ?

Ha ... That's Easy !!

• Let $y = \sqrt{1-x^2}$ and substitute in T

• Solve T for x

How about this one?

- Same T
- But now,

$$f(x,y):(x^2+y^2)^2-x^2+y^2=0$$

- Still want to solve for y and substitute?
- Didn't think so !

All Hail Lagrange !

- Lagrange's Multipliers [LM] is a tool to solve such problems [& live through it]
- Intuition:
 - For each constraint 'i', introduce a new scalar variable $L_{\rm i}$ (the Lagrange Multiplier)
 - Form a linear combination with these multipliers as coefficients
 - Problem is now unconstrained and can be solved easily

Use for NLP

- Think EM
 - The "M" step in the EM algorithm stands for "Maximization"
 - This maximization is also constrained
 - Substitution does not work here either
- If you are not sure how important EM is, stick around, we'll tell you !

Vector Calculus 101

- A gradient of a function is a vector :
 - Direction : direction of the steepest slope uphill
 - Magnitude : a measure of steepness of this slope
- Mathematically, the gradient of f(x,y) is: $grad(f(x,y)) = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$

How do I use LM ?

- Follow these steps:
 - Optimize f, given constraint: g = 0
 - Find gradients of 'f' & 'g', grad(f) & grad(g)
 - Under given conditions, grad(f) = L * grad(g)
 [proof coming]
 - This will give 3 equations (one each for x, y and z)
 - Fourth equation : g = 0
 - You now have 4 eqns & 4 variables [x,y,z,L]
 - Feed this system into a numerical solver
 - This gives us $(x_{\rm p},y_{\rm p},z_{\rm p})$ where f is maximum. Find $f_{_{max}}$
 - Rejoice !

Examples are for wimps !

What is the largest square that can be inscribed in the ellipse $x^2+2y^2=1$?

And all that math ...

- Maximize f = 4xy subject to $x^2+2y^2=1$
- grad(f) = [4y, 4x], grad(g) = [2x, 4y]
- Solve:
 - 2y Lx = 0
 - x Ly = 0• $x^2 + 2y^2 - 1 = 0$
- Solution : $(x_p, y_p) = \left(\frac{\sqrt{2}}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) \& \left(-\frac{\sqrt{2}}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right)$
- $f_{max} = 4\sqrt{2}/3$

Why does it work?

- Think of an f, say, a paraboloid
- Its "level curves" will be enclosing circles
- Optima points lie along g and on one of these circles
- 'f' and 'g' MUST be tangent at these points:
 - If not, then they cross at some point where we can move along g and have a lower or higher value of f
 - So this cannot be an point of optima, but it is!
 - Therefore, the 2 curves are tangent.
- Therefore, their gradients(normals) are parallel
- Therefore, grad(f) = L * grad(g)

Expectation Maximization

- We are given data that we assume to be generated by a stochastic process
- We would like to fit a model to this process, i.e., get estimates of model parameters
- These estimates should be such that they maximize the likelihood of the observed data

 MLE estimates
- EM does precisely that and quite efficiently

Obligatory Contrived Example

- Let observed events be grades given out in a class
- Assume that there is a stochastic process generating these grades (yeah ... right !)
- P(A) = 1/2, $P(B) = \mu$, $P(C) = 2\mu$, $P(D) = \frac{1}{2} 3\mu$
- Observations:
 - Number of A's = 'a'
 - Number of B's = 'b'
 - Number of C's = 'c'
 - Number of D's = 'd'
- What is the ML estimate of ' μ ' given a,b,c,d ?

Obligatory Contrived Example

- $P(A) = \frac{1}{2}$, $P(B) = \mu$, $P(C) = 2\mu$, $P(D) = \frac{1}{2} 3\mu$
- P(Data | Model) = P(a,b,c,d | μ) = K (¹/₂)^a(μ)^b(2 μ)^c(¹/₂-3 μ)^d = Likelihood
- log P(a,b,c,d | μ) = log K + a log¹/₂ + b log μ + c log 2 μ + d log (¹/₂-3 μ)

= Log Likelihood [easier to work with this, since we have sums instead of products]

- To maximize this, set $\partial LogP/\partial \mu = 0$
- $\frac{b}{\mu} + \frac{2c}{2\mu} \frac{3d}{1/2 3\mu} = 0 => \mu = \frac{b+c}{6(b+c+d)}$
- So, if the class got 10 A's, 6 B's, 9 C's and 10 D's, then $\mu = 1/10$
- This is the regular and boring way to do it
- Let's make things more interesting ...

Obligatory Contrived Example

- $P(A) = \frac{1}{2}$, $P(B) = \mu$, $P(C) = 2\mu$, $P(D) = \frac{1}{2} 3\mu$
- A part of the information is now hidden:
 - Number of high grades (A's + B's) = h
- What is an ML estimate of μ now?
- Here is some delicious circular reasoning:
 - If we knew the value of μ , we could compute the expected values of 'a' and 'b' $\ensuremath{\mbox{EXPECTATION}}$
 - If we knew the values of 'a' and 'b', we could compute the ML estimate for μ <code>MAXIMIZATION</code>
- Voila ... EM !!

Obligatory Contrived Example Dance the EM dance

- Start with a guess for $\boldsymbol{\mu}$
- Iterate between Expectation and Maximization to improve our estimates of $\boldsymbol{\mu}$ and b:
 - $\mu(t)$, b(t) = estimates of μ & b on the t'th iteration
 - $\mu(0) = initial guess$
 - $b(t) = \mu(t) / (\frac{1}{2} + \mu(t)) = E[b | \mu] : E-Step$
 - $\mu(t) = (b(t) + c) / 6(b(t) + c + d) : M-step$ [Maximum LE of μ given b(t)]
 - Continue iterating until convergence
- Good news : It **will** converge to a maximum.
- Bad news : It will converge to **a** maximum

Where's the intuition?

- Problem: Given some measurement data X, estimate the parameters Ω of the model to be fit to the problem
- Except there are some nuisance "hidden" variables Y which are not observed and which we want to integrate out
- In particular we want to maximize the posterior probability of Ω given data X, marginalizing over Y:

 $\boldsymbol{\varOmega}^{\, \text{'}= \underset{\boldsymbol{\varOmega}}{\text{argmax}}} \sum_{\boldsymbol{Y}} P(\boldsymbol{\varOmega}, \boldsymbol{Y} \,|\, \boldsymbol{X})$

- The E-step can be interpreted as trying to construct a lower bound for this posterior distribution
- The M-step optimizes this bound, thereby improving the estimates for the unknowns

So people actually use it?

- Umm ... yeah !
- Some fields where EM is prevalent:
 - Medical Imaging
 - Speech Recognition
 - Statistical Modelling
 - NLP
 - Astrophysics
- Basically anywhere you want to do parameter estimation

... and in NLP ?

- You bet.
- Almost everywhere you use an HMM, you need EM:
 - Machine Translation
 - Part-of-speech tagging
 - Speech Recognition
 - Smoothing

Where did the math go?

We have to do SOMETHING in the next class !!!